Lecture- 5

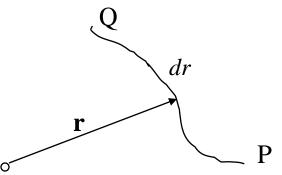
line, surface and volume integrals

Pradeep Singla

Vector integration

- Linear integrals
- Vector area and surface integrals
- Volume integrals

An arbitrary path of integration can be specified by defining a variable position vector \mathbf{r} such that its end point sweeps out the curve between P and Q



A vector A can be integrated between two fixed points along the curve r:

$$\int_{P}^{Q} \underline{\mathbf{A}} \cdot \underline{\mathbf{dr}} = \int_{P}^{Q} (A_{x} dx + A_{y} dy + A_{z} dz)$$

Scalar product

If the integration depends on P and Q but not upon the path **r** :

$$\mathbf{A} \cdot \mathbf{dr} = d\phi = \nabla \phi \cdot dr$$
$$\therefore (\mathbf{A} - \nabla \phi) \cdot \mathbf{dr} = 0$$

if
$$A \cdot B = 0$$

The vector A is zero
The vector B is zero
 $\theta = 90^{\circ}$

$$\mathbf{A} - \nabla \phi = 0$$

If a vector field \mathbf{A} can be expressed as the gradient of a scalar field ϕ , the line integral of the vector \mathbf{A} between any two points P and Q is independent of the path taken.

If ϕ is a single-valued function :

$$\frac{\partial}{\partial y}(A_x) = \frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial x}\right) = \frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial y}\right) = \frac{\partial}{\partial x}(A_y) \quad \text{and} \quad \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)\mathbf{k} = 0$$

$$A = \nabla \phi$$

$$\nabla \times A = 0$$

Example :
$$W = \int_{P}^{Q} F \cdot dr$$

Conservative vector field

d

Ρ

Ē

B **Theorem.** If there exists ϕ such that $\vec{F} = \text{grad } \phi_{\text{then}}$ $\int_{AB} \vec{F} \cdot \vec{dl} = \phi(B) - \phi(A)$

Consequently, the value of the integral doesn't depend on the path, but only on its beginning A and its end B. We say that the vectorfield $\vec{\mathbf{F}}$ is **conservative**

Proof.
$$\int_{AB} \vec{F} \cdot \vec{dI} = \int_{AB} grad\phi \cdot \vec{dI} = \int_{AB} \frac{\partial \phi}{\partial x} \cdot dx + \frac{\partial \phi}{\partial y} \cdot dy + \frac{\partial \phi}{\partial z} \cdot dz =$$
$$= \int_{AB} d\phi = \phi(B) - \phi(A)$$

Pradeep Singla

Work, force and displacement

If the vector field is a force field and a particle at a point \mathbf{r} experiences a force \mathbf{f} , then the work done in moving the particle a distance $\delta \mathbf{r}$ from \mathbf{r} is defined as the displacement times the component of force opposing the displacement :

$$\delta W = F \cdot \delta r$$

The total work done in moving the particle from P to Q is the sum of the increments along the path. As the increments tends to zero:

$$W = \int_P^Q F \cdot dr$$

When this work done is independent of the path, the force field is "**conservative**". Such a force field can be represented by the gradient of a scalar function :

$$F = \nabla W$$
 $A = \nabla \phi$

When a scalar point function is used to represent a vector field, it is called a "potential" function :

gravitational potential function (potential energy)......gravitational force field electric potential functionelectrostatic force field magnetic potential function.....^{Pradeep Singla}...magnetic force field

Surface : a vector by reference to its boundary

area : the maximum projected area of the element direction : normal to this plane of projection (right-hand screw rule)

$$d\mathbf{S} = \mathbf{n}dS$$

The surface integral is then :

$$\int \mathbf{A} \cdot \mathbf{dS} = \int \mathbf{A} \cdot \mathbf{n} dS$$

If A is a force field, the surface integral gives the total forace acting on the surface.

If **A** is the velocity vector, the surface integral gives the net volumetric flow across the surface.